The PIC16F87/88 Rev. B1 parts you have received conform functionally to the Device Data Sheet (DS30487C), except for the anomalies described below.

All of the issues listed here will be addressed in future revisions of the PIC16F87/88 silicon.

The following silicon errata apply only to PIC16F87/88 devices with these Device/Revision IDs:

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Device ID</th>
<th>Revision ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC18F87</td>
<td>00 0111 001</td>
<td>00101</td>
</tr>
<tr>
<td>PIC16F88</td>
<td>00 0111 011</td>
<td>00101</td>
</tr>
</tbody>
</table>

1. **Module: Internal RC Oscillator**

A high Sleep current will exist when the following condition is met and procedures are followed:

CONDITION: FOSC<2:0> (Configuration Word 1 Register) bits are configured for any oscillator selection other than the internal RC oscillator.

PROCEDURE:

1. Clock switch occurs anywhere in the application code where the internal RC oscillator is selected via the SCS bits ('10').
2. Sleep mode is entered while the SCS bits are configured for the internal RC oscillator ('10').

Work around

Before Sleep mode is entered, configure or clear the SCS bits ('00') to switch back to the primary clock source that is defined by FOSC<2:0> (Configuration Word 1 Register).

Date Codes that pertain to this issue:

All date codes associated with silicon revision B1. This issue is not found in devices with silicon revision C2 (Revision ID 01000) or later.
2. **Module: Internal RC Oscillator IOFS bit**

The device data sheet states when an INTOSC frequency is selected (125, 250, 500 kHz; 1, 2, 4, 8 MHz), the frequency will be stable when the IOFS bit becomes set (IOFS = 1) at 4 ms. The following applies for applications relying on time dependent code.

Under the following conditions, any of the INTOSC frequencies may not be stable when IOFS becomes set (IOFS = 1). Devices may vary from one to the next and may take as long as 60 ms to become stable.

1. Wake from Sleep, internal RC oscillator is selected via the SCS bits or Configuration Word 1 and the IRCF bits are configured for an INTOSC frequency.
2. POR is executed, internal RC oscillator is selected via the SCS bits or Configuration Word 1 and the IRCF bits are configured for an INTOSC frequency.
3. The INTRC (31.25 kHz) is clocking the device and a switch to an INTOSC frequency is executed via modification of the IRCF bits.
4. An alternative oscillator selection is clocking the device (i.e., HS mode) and a clock switch to the internal RC oscillator is executed via the SCS bits with the IRCF bits configured for an INTOSC frequency.

Work around

Implement the following software delay shown in Example 1 after an INTOSC frequency has been enabled and before any frequency dependent application code is executed. This routine will delay application execution approximately 2K-150K TCY (instruction cycles are dependent upon the INTOSC frequency) to ensure a stable INTOSC frequency.

Date Codes that pertain to this issue:

All date codes associated with silicon revision B1. This issue is not found in devices with silicon revision C2 (Revision ID 01000) or later.

EXAMPLE 1: DELAY ROUTINE

```
DlyVarH equ <define address based on application requirements>
DlyVarL equ <define address based on application requirements>

;Load the delay variable DlyVarH with the following value for the selected frequency:
;125kHz 0x0300
;250kHz 0x0600
;500kHz 0x0C00
;1MHz 0x1900
;2MHz 0x3100
;4MHz 0x6200

delay ;insure the correct data memory bank is selected
    ;for access of data variables
    CLRF DlyVarL ;initialize low delay variable
    MOVWF DlyVarH

dly_loop
    DECFSZ DlyVarL,f ;decrement low variable
    GOTO dly_loop
    DECFSZ DlyVarH,f ;decrement high variable
    GOTO dly_loop
RETURN ;delay done
```
3. Module: Internal RC Oscillator

When any one of the seven INTOSC frequencies is enabled by the following conditions, it is possible
for the oscillator to overshoot the selected frequency:

1. A clock switch from INTRC (31 kHz) to an
 INTOSC (125 kHz-8 MHz) frequency via the
 IRCF bits (OSCCON register).
2. Exit from Sleep mode with the IRCF bits
 already configured for an INTOSC frequency.
3. Executing a clock source switch via the SCS
 bits (OSCCON register) to the internal RC
 oscillator with the IRCF bits already configured
 for an INTOSC frequency.

If the selected frequency is 8 MHz, then the
voltage versus frequency specification of the
device may be violated.

Work around

When it is required for the application to run at
8 MHz, it is recommended that the application
does not start executing code at 8 MHz until the
60 ms firmware delay (see issue 2) has
completed. During the 60 ms settling period, the
application can execute code up to 4 MHz. Upon
completion of the 60 ms firmware delay, the 8 MHz
can be selected via the IRCF bits.

Date Codes that pertain to this issue:

All date codes associated with silicon revision B1.
This issue is not found in devices with silicon
revision C2 (Revision ID 01000) or later.

4. Module: PORTB Pull-ups

When RBPU = 0 (OPTION_REG register), the
PORTB weak pull-ups will not be disabled by the
input functions of the SSP and/or CCP (Capture
mode) module as indicated by the RB<5:1> I/O
block diagrams in Section 5.0 “I/O Ports”.

Work around

1. If the SSP and/or CCP (Capture mode) module
 is enabled, do not enable the PORTB weak
 pull-ups and use external pull-up resistors.
 OR

2. If the SSP and/or CCP (Capture mode) module
 and PORTB pull-ups are enabled, then evaluate
 the functionality of the SSP (I2C™/SPI) or
 CCP (Capture mode) module to ensure proper
 operation within your application.

Date Codes that pertain to this issue:

All date codes associated with silicon revision B1.
This issue is not found in devices with silicon
revision C2 (Revision ID 01000) or later.

5. Module: PORTB

A delay of 1 Tosc will occur if an instruction that
modifies the contents of PORTB simultaneously
occurs when any of the following modules (if
enabled) execute an operation that effects the
signals on their respective PORTB I/O pins.

CCP Module:

PWM Mode (CCP1CON<3:0> = 11xx)

When CCP1CON<5:4> bits = 10, the PWM output
signal will be delayed by 1 Tosc when an instruction
to modify the contents of PORTB is executed.

SSP Module:

SPI Slave Modes (SSPCON<3:0> = 0100 and 0101)

Clock signal is derived from an external source.
Transmission of data (SDO pin) will be delayed by
1 Tosc when an instruction to modify the contents
of PORTB is executed. Reception of data is not
affected.

AUSART Module:

Synchronous Slave Mode (TXSTA<7> = 0)

Clock signal is derived from an external source.
Transmission of data (TX pin) will be delayed by
1 Tosc when an instruction to modify the contents
of PORTB is executed. Reception of data is not
affected.

Work around

None

Date Codes that pertain to this issue:

All date codes associated with silicon revision B1.
This issue is not found in devices with silicon
revision C2 (Revision ID 01000) or later.
6. Module: PORTB, RB6 Pin

During normal operating conditions, extra current will be consumed on the PIC16F87/88 device’s power source (VDD) when the PORTB, RB6 pin is configured as an analog input (AN5) and is connected to an analog source. A/D operation on RB6 or any of the other analog I/O pins will not be affected by this extra current. The extra current is due to the T1CKI Schmitt Trigger not being disabled when RB6 is configured as an analog pin. The amount of additional current observed will be dependent on the analog voltage present on the AN5 pin. The following table illustrates this additional current across operating temperatures:

<table>
<thead>
<tr>
<th>Max Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>All Devices</td>
<td>VDD = 5.5V, AN5 = 0.6-0.7 VDD</td>
</tr>
<tr>
<td>1.4 mA</td>
<td>-40°C</td>
</tr>
<tr>
<td>1.3 mA</td>
<td>+25°C</td>
</tr>
<tr>
<td>1.1 mA</td>
<td>+85°C</td>
</tr>
<tr>
<td>Extended Devices</td>
<td>+125°C</td>
</tr>
</tbody>
</table>

Work around

All date codes associated with silicon revision B1. This issue is not found in devices with silicon revision C2 (Revision ID 01000) or later.

7. Module: PORTB Interrupts

When the PORTB interrupt-on-change feature and a PORTB peripheral are enabled simultaneously, the PORTB peripheral input signal’s rising and falling edges will trigger an interrupt-on-change event. This is due to the interrupt-on-change feature not being disabled on the respective pin for that peripheral when it is enabled.

The affected pins and peripheral signals on PORTB are RB4: SCK and SCL, RB5: SS and RB6: T1CKI. The functionality of T1OSI (RB7), T1OSO (RB6) and TX/CK (RB5) is not affected by this issue.

Work around

All date codes associated with silicon revision B1. This issue is not found in devices with silicon revision C2 (Revision ID 01000) or later.

Clarifications/Corrections to the Data Sheet:

In the Device Data Sheet (DS30487C), the following clarifications and corrections should be noted.

None.
REVISION HISTORY

First revision of this document. Data Sheet Clarification issue 1 (Voltage Reference Specifications).

Added Data Sheet Clarification issue 2 (Timer1 Oscillator and In-Circuit Serial Programming).

Added silicon issue 1 (Internal RC Oscillator).

Updated silicon issue 1 (Internal RC Oscillator) and added Data Sheet Clarification issue 3 (DC Characteristics).

Added silicon issue 2 (Internal RC Oscillator IOFS bit) and 3 (PORTB Pull-ups).

Amended silicon issue 1 (Internal RC Oscillator) and 2 (Internal RC Oscillator IOFS bit), added new issue 3 (Internal RC Oscillator), renumbered existing issue 3 to issue 4 (PORTB Pull-ups) and added issue 5 (PORTB).

Removed Data Sheet Clarification issues.

Added silicon issue 6 (PORTB, RB6 pin).

Added silicon issue 7 (PORTB Interrupts).

Annotated all silicon issues to show resolution in subsequent silicon revisions of this device.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELoc, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Migrateable Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active Thermistor, Mindi, MiWi, MPASM, MPLIB, MPLINK, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2006, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona, Gresham, Oregon and Mountain View, California. The Company’s quality system processes and procedures are for its PICmicro® 8-bit MCUs, KeesLoc® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
WORLDWIDE SALES AND SERVICE

<table>
<thead>
<tr>
<th>AMERICAS</th>
<th>ASIA/PACIFIC</th>
<th>ASIA/PACIFIC</th>
<th>EUROPE</th>
</tr>
</thead>
</table>
| Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support: http://support.microchip.com
Web Address: www.microchip.com | Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431 | India - Bangalore
Tel: 91-80-4182-8400
Fax: 91-80-4182-8422 | Austria - Wels
Tel: 43-7242-2244-3910
Fax: 43-7242-2244-393 |
| Atlanta
Alpharetta, GA
Tel: 770-640-0034
Fax: 770-640-0307 | Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755 | India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632 | Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829 |
| Boston
Westborough, MA
Tel: 508-367-1700
Fax: 508-367-0087 | China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104 | India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513 | France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79 |
| Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075 | China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889 | Japan - Yokohama
Tel: 81-45-471-6166
Fax: 81-45-471-6122 | Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44 |
| Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924 | China - Fuzhou
Tel: 86-591-8750-3506
Fax: 86-591-8750-3521 | Korea - Gumi
Tel: 82-54-473-4301
Fax: 82-54-473-4302 | Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781 |
| Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260 | China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431 | Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934 | Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340 |
| Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387 | China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205 | Malaysia - Penang
Tel: 60-4-646-8870
Fax: 60-4-646-5086 | Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91 |
| Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608 | China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066 | Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069 | UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820 |
| Santa Clarita
Santa Clarita, CA
Tel: 661-644-4844
Fax: 661-644-4845 | China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2933 | Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850 | |
| Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509 | China - Shenzhen
Tel: 86-7-5364-4803
Fax: 86-7-5364-4803 | Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459 | Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803 |
| | China - Shenzhen
Tel: 86-7-5364-4803
Fax: 86-7-5364-4803 | Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102 | |
| | China - Shunde
Tel: 86-27-2839-5507
Fax: 86-27-2839-5571 | Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350 | |
| | China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118 | | |